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Abstract—Containers are a lightweight virtualization method
for running multiple isolated Linux systems under a common
host operating system. Container-based computing is revolution-
izing the way applications are developed and deployed. A new
ecosystem has emerged around the Docker platform to enable
container based computing. However, this revolution has yet to
reach the HPC community. In this paper, we provide background
on Linux Containers and Docker, and how they can be of value
to the scientific and HPC community. We will explain some of
the use cases that motivate the need for user defined images and
the uses of Docker. We will describe early work in deploying
and integrating Docker into an HPC environment, and some
of the pitfalls and challenges we encountered. We will discuss
some of the security implications of using Docker and how
we have addressed those for a shared user system typical of
HPC centers. We will also provide performance measurements to
illustrate the low overhead of containers. While our early work
has been on cluster-based/CS-series systems, we will describe
some preliminary assessment of supporting Docker on Cray XC
series supercomputers, and a potential partnership with Cray to
explore the feasibility and approaches to using Docker on large
systems.

Keywords-Docker; User Defined Images; containers; HPC sys-
tems

I. INTRODUCTION

The use of Linux containers to accelerate development and
ease distribution and deployment of applications has recently
exploded. This revolution is being led by technologies such as
Docker [1] and its emerging ecosystem, but also includes de-
velopments by other players, such as Project Atomic, CoreOS,
and others. While this transition is already having an impact
on the enterprise and web space, its implications for scientific
and technical computing including HPC are still unlcear. We
believe that container-based computing has the potential to
dramatically impact scientific computing and we have done
early prototyping to investigate how container concepts can be
integrated into HPC environments and benchmarked some of
the alternative implementations. In this paper, we will provide
some background on container computing including Docker
and why we believe it has value to the scientific and HPC com-
munity. We will then describe our prototype implementation
including our rationale for certain design choices and some of
the constraints imposed by the existing architectures. Next, we
will present some benchmarks that compare the performance
of our implementation with some of the other implementation

options. We will close with some discussion of this prototype
and conclusions.

II. BACKGROUND

Exploiting Linux Containers to support flexible, scalable
computing has gained rapid adoption in the past two years.
While Linux has possessed the basic features to support
containers (cgroups and namespaces) and basic tools (i.e.
LXC [2], OpenVZ) to manage them have existed for nearly a
decade, the rapid adoption has been driven by the appear-
ance of a few key technologies that have simplified using
containers and led to the rapid emergence of an ecosystem
around containers. This adoption is partly being driven by
the emergence of technologies like Docker which provide a
framework for managing container instances coupled with a
powerful image management system backed by a growing
collection of images. Docker is not alone as other competitors
are emerging to offer similar capabilities, and new layers of
capabilities such as orchestration are starting to build on the
container infrastructure.

Linux containers address many of the requirements handled
by full virtual machines (VMs), such as customization and
isolation. However, containers rely on capabilities in the
kernel level to implement these features. This has a few
consequences. One is processes running in containers on a
system run in a common linux kernel. This means that if a
process or user manages to disrupt the kernel (i.e. due to a
bug) it can impact other containers running on that systems.
In contrast, full virtual machines typically rely on hardware
features to provide full isolation. Consequently, full VMs
typically offer greater protection between applications running
on a shared system. This is compounded by the fact that the
Linux kernel offers varying levels of isolation depending on
the subsystem. For example, containers can have fairly strong
levels of isolation for processors and memory, but offer weaker
isolation for I/O.

The main advantage of containers over virtual machines
is they are typically much more light-weight. For example,
containers can require significantly less memory since a con-
tainer will often only run the specific application or process
that is needed. For example, a web application may only
need to run apache. Other supporting services (i.e. name
services, management, etc) are provided by the host system
and typically shared across containers. This frees up the



memory that would be required in a VM environment, where
each VM needs to have those services running. Additionally, a
container based system only needs to run a single copy of the
kernel where as for VMs, each VM has its own instance of the
kernel. These can lead to significant overheads, especially for
relatively light-weight processes that may only require tens
of megabytes. These extras processes and kernel space also
impact start up time. Since starting a VM requires initializing a
virtual machine and booting an entire kernel, booting can take
several minutes. In contrast, starting a container is essentially
just starting a process so it typically requires fractions of
second. This fast startup can be very useful for highly dynamic
workloads that may need to quickly shift resources between
different components based on demand.
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Fig. 1. Comparison of VMs versus Docker containers. Each VM requires
the full overhead of a OS. Docker containers share a kernel and require much
less memory and disk space.

Accessing shared resources is also different between the two
models. Most applications need to have access to data stored
in a global high-performance or use it to share state between
steps in a workflow. In a VM environment, each VM must
run an instance of the file system client. If many VMs are
running on each node, this can lead to a dramatic increase in
the number of file system clients the file system must serve.
This also adds complexity to manage and configure the VMs
to access the file systems, as well as raises security concerns if
the user has any elevated privileges in the VM environment.
In contrast, a container model can typically map through a
file system from the host system into individual containers.
This means there is only one instance of the file system client
per host system. This can typically be done more securely
depending on the implementation. We will discuss this further
under in Section IV.

A study by IBM found that the lower overhead of containers
can significantly impact subsystem and application perfor-
mance [3]. According to the study, “In general, Docker equals
or exceeds KVM performance in every case we tested.” This
study found that I/O transaction and latency sensitive bench-
marks were particularly better performing on Docker. This
makes sense, since full VMs typically require I/O operations
to traverse multiple layers before being serviced which adds
overhead. For example, a MySQL benchmark achieved over

2x more transactions per second and latencies that were as
much as 10x lower for certain transaction rates.

III. MOTIVATION

Centers like NERSC are increasingly struggling to keep
pace with the rapid expansion in applications, libraries, and
tools demanded by the user community, especially new data-
intensive communities. This growth is driven by a number
of factors. In some cases, large communities are developing
software to serve their specific scientific community. In other
cases, users may be interested in specific tools that are difficult
to install, have a long list of dependencies, and are difficult to
port. In some cases, this software may be specifically targeted
at an OS environment that is common for their domain but
may conflict with the requirements from another community.
For example, the biology and genomics community may adopt
Ubuntu as their base OS with a specific version of Perl
and Python. Meanwhile, the High-Energy Physics community
may use Scientific Linux as their platform of choice with
very specific requirements for certain libraries, compilers, and
scripting tools. While porting these tools to other OS versions
may be possible, the overhead to do the port and validate it
may be too high for a community. Modules [4] can be used to
support different versions of libraries, scripting tools, etc, but
building a robust, well tested stack with the exact combination
of dependencies can be tedious and challenging.

In many cases, what users desire is the ability to easily
execute their scientific applications and workflows in the
same environment used for development or adopted by their
community. In some cases, this can include being able to seam-
lessly go from their desktop to the HPC environment. Some
communities have turned to the cloud because it promises to
provide this flexibility. However, using a cloud environment
can be challenging as users have to typically address all of the
components that would normally be provided by a managed
cluster or HPC center. For example, the users need to solve
how they handle workload management, file systems, and
basic provisioning. The overhead to address these requirements
solely to gain flexibility over the software stack is typical too
large to be feasible. In our experience, what users desire is
the ability to easily define their own images and, then, easily
insatiate these environments on large scale HPC systems at
centers like NERSC. NERSC has termed this capability as
User Defined Images (UDI).

Containers promise to offer the flexibility of cloud-type
systems coupled with the performance of bare-metal systems.
Furthermore, containers have the potential to be more easily
integrated into traditional HPC environments which means that
users can obtain the benefits of flexibility with out the added
burden of managing other layers of the system (i.e. batch
systems, file systems, etc).

IV. IMPLEMENTATION ALTERNATIVES

There are several approaches to supporting User Defined
Images (UDI). We will briefly describe some of the options
and provide the rationale for the approach we chose.



CHOS NERSC has experience providing similar func-
tionality via CHOS [5]. CHOS was developed at NERSC
to allow a shared cluster to concurrently support multiple
environments, even within a single node. This was driven by
the need to support several large HEP projects which had
their own approved software stacks. CHOS uses a custom
kernel module that provides a process specific symbolic link.
This symbolic link can point to different directories depending
on which process is accessing it. CHOS has worked well
for supporting a small number of managed environments,
but isn’t designed to allow users to define their own custom
environment. Using CHOS on a Cray system would require
porting the kernel module to the Cray OS which may not be
trivial. But the bigger issue is CHOS’s lack of support for
user-defined images. Finally, CHOS lacks broad community
support. NERSC felt it was important to be able to tap into the
Docker image repository since we anticipate this will become
a rich ecosystem for specialized images and applications. For
these reason, we focused on options that could integrate with
Docker.

MyDock Recently, NERSC deveoped a custom wrapper for
Docker (MyDock) which allows a user to run specific docker
commands and restricts the execution of docker containers to
run: as themselves (i.e. non-root), using the native networking
interface, and with specific paths mapped into the container.
This is specifically targeted towards allowing users to bring
in their own images, but doesn’t allow them to use all of the
features of Docker. In our experience, these restrictions were
well suited for the ways scientific users need to execute their
applications. For example, MyDock was used by the Dark
Energy Survey to demonstrate how they could use Docker
to create a portable execution environment. The choice of
Docker was suggested by NERSC staff as an alternative to
virtual machine/cloud-style options and the use of Docker
has since gained acceptance within the project. MyDock has
proven useful, but it presents several challenges in porting
this approach to the Cray systems. For example, Docker relies
heavily on local disk to function. While it would be possible
to work around this requirement, it could have performance
implications. Furthermore, MyDock requires the Docker dae-
mon to be running on each compute node. This would add
complexity and introduces the risk that processes may not get
properly cleaned up.

CRAY ROOTFS Discussions with Cray Engineers led us
to investigate options to leverage support in ALPS to “chroot”
into system-defined directories during the execution of an
aprun using the CRAY ROOTFS environment variable.
This helps solve parts of the problem but still requires in-
tegration. In addition, there remains the question of where
the image should reside and in what format it should be
stored. The CRAY ROOTFS directive is typically used
for Dynamic Shared Library (DSL ) support and the image
is accessed via Cray’s Data Virtualization Service (DVS).
While we could have used a similar approach here, we were
interested in exploring other alternatives including storing the
images as unpacked trees in the Lustre scratch file system and

storing the images as loopback mountable image files. After
some benchmarking tests (described later), we determined that
storing the images in loopback mounted files provided the best
overall performance.

Other Options There are other options we considered but
ruled out early for various reasons. For example, a local disk
could have been emulated via an iSCSI mount. This was ruled
out due to the added complexity. Another option was to use
a logical volume accessed through a loop back file. This was
also ruled out for complexity reasons.

TABLE I
SUMMARY OF POTENTIAL IMPLEMENTATION APPROACHES.

Approach Pros Cons
CHOS - ChrootOS Integrated with the

batch and login sys-
tems

Not designed for user
generated images

MyDock - Docker
Wrapper

Uses Docker directly Requires running a
Docker daemon on
each compute node

CRAY ROOTFS
- DVS Mimics current DSL

approach
DVS servers can be a
bottleneck

- Lustre (unpacked) Scales with Lustre
File System

Metadata server could
become a bottleneck

- Lustre (packed) Scales with Lustre
File System, Metadata
is more localized

Additional complexity
to pack images

V. PROTOTYPE IMPLEMENTATION

NERSC has created an initial implementation of the UDI
system capable of running efficiently on a Cray XC or XE
class system called “Shifter”. We had several goals in mind
when designing Shifter to be an HPC-enabled UDI solution
including:

• Scalability and Performance of running applications
• Scalability and Performance of setting up the con-

tainer/image
• Accessibility of Shared Resources, Parallel Filesystems,

Interconnect
• Compatibility with batch system resource management
• Compatibility with Docker as well as other con-

tainer/image formats
• Ability to fully leverage existing Docker images and

Docker push/pull functionality
• Robust, Secure Implementation

Considering these different factors, combined with some of
the potential deployment issues for running Docker on Cray
compute nodes, for Shifter we have opted not to directly use
Docker in the CLE environment, but rather to automatically
extract images from native formats and convert to a common
format on an external gateway node, and then provide software
within Shifter to setup the environment on the compute node(s)
using that common image format. This methodology allows
the Shifter solution to interoperate between different upstream
image/container providers, and it provides the opportunity to
customize and tune the image for use in the HPC environment.



A. Implementation Description

The major functions that Shifter needs to perform are:
• Allow user to select or download an image
• Convert and transfer images
• Integrate UDI request mechanism into Workload Manager

(e.g., qsub, sbatch)
• Mechanism to setup and customize image on compute

nodes
• Mechanism to completely deconstruct any image and

return compute nodes to normal state
• Provide mechanism for generic internode communication,

even if libraries for native access to the HSN are not
present in image

To achieve all these functions, Shifter is decomposed into
four major components: an Image Gateway, command-line
utilities, “udiRoot”, and Workload Manager (WLM) Integra-
tion components. The command-line utilities serve to allow a
user to interactively manage and select images as well as ease
environmental translations between the host-system environ-
ment and the target UDI. The Image Gateway is responsible
for managing the images, keeping a data-store of presently
loaded images, and transferring images to the computational
platforms. In the case of Docker images, the Image Gateway
actually communicates with a local docker daemon to pull
down an image from DockerHub or a private registry, and then
extract the image and any needed metadata. The “udiRoot”
component contains all the scripts and configurations that
run on a compute node to actually make the UDI available,
and to deconstruct it at the end of a job. Workload Manager
integration is critical because the WLM is directly responsible
for determining which nodes are to be used, and thus job
prologue and epilogues are used to setup the UDI in the job.
Furthermore, the WLM must provide some mechanism for
accessing the UDI in the batch job.

B. User Experience

Figure 2 shows a basic flow diagram for how the Shifter
system operates and integrates into the workflow of a user.
From the user’s perspective, it is intended to be relatively
straightforward to use. First, the user needs to either select or
create a Docker container image with their target application(s)
and dependencies and push that image into DockerHub. Next,
the user logs into the Shifter-enabled computational resource
and issues a command like “docker pull X” where “X”
represents the tagged container revision. That will cause the
image to be retrieved from DockerHub, or a designated private
registry, and prepare it for use by Shifter. Once the image
is ready, the user simply submits a batch job requesting the
target image. Any aprun/srun will automatically be run within
the image, and so some care needs to be taken to set the
environment variables up appropriately within the batch script.

When submitting a Shifter job, the user has the option to
designate volume mappings, very similar to the volume map-
pings supported by regular Docker. This enables a user to map,
for example, /scratch/user/path to /output within the context of
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Fig. 2. Diagram of the various components of the Shifter prototype for User
Defined Images.

the batch job, thus enabling /output to be used for writing in
the job, supposing of course that “/output” was defined as a
volume target in the original Docker container image. Another
option the user has is to designate that the container should
be “run”, this means that if the original Docker container has
a defined entry-point and environmental variables, then that
entry point can be automatically used without having to write
an explicit batch script. Some Workload Managers may require
a simple wrapper script to be written, however.

At the conclusion of a Shifter job, the user receives output
and exit status just as they would for any other job, and, on the
surface does not represent a major departure from any normal
HPC batch job.

C. Restrictions on Images Used in Shifter

Owing to the way Shifter is implemented, effectively relying
on chroot and the batch system, there are some minimal
requirements that must be true about any image in order
to be used within Shifter many of these are similar to
normal Docker limitations. Among others, the image must
be based on a relatively “normal” GNU/Linux distribution,
for example having standard canonical paths (/bin, /usr, /etc,
...) [6], based on glibc or compatible variants, and contain at
minimum /bin/sh. The application packaged within the image
should not make use of features of Linux kernels newer than
the one loaded in the base system. In practice this rarely a
problem in our experience, as most applications only make
use of fairly traditional system calls. Because there is only
one running Linux kernel operating the host system and all
UDI jobs, it is not possible to load kernel modules for the
particular or exclusive use of a UDI. Doing so could represent
a major security risk if allowed. For security reasons, Shifter
attempts to detect potentially dangerous path names in regions
where Shifter must interact with the image. If any dangerous
path names are detected, the image is rejected. Therefore,
images for use in Shifter should not make use of path names
(especially in /, /etc, or /var) that do not confirm to regular



Linux “norms”.

D. Image Gateway

Standard Docker enables a user to iteratively modify an
image and then store it using the “docker push” functionality.
One of the primary goals of the Shifter project is to enable
access to the rich ecosystem of available Docker images in
DockerHub, as well as to leverage any containers stored in
private registries by allowing users to “pull” previously created
images. Owing to the complexities of deploying Docker in
an HPC environment, we elected to only run the docker
daemon on a physically discrete system, dubbed the Image
Gateway. At present, there is a simple command line interface
provided to users to login, pull, and list images on the gateway
using standard Docker commands. All of these commands
communicate with the Image Gateway using a simple TCP-
based conversational protocol.

When a connection is initiated to the Image Gateway, xinetd
launches a python script (imageGateway), which evaluates
the request and then interacts with dockerd to satisfy that
request. When a new image or a new version of an image
is available, imageGateway pulls the image to a local docker
graph and then extracts the image from it using the “docker
save” functionality. The needed size of the ext4 image is
evaluated based on the uncompressed size of the resulting
tarball, and then the layers are extracted in the proper order
into the ext4 image file. In addition, special care is taken to
extract the entryepoint, working directory, and environment
variables of the final layer to enable a user to later “run” the
container.

Once the ext4 image file and metadata are generated, im-
ageGateway finally transfers the resulting images to the target
computational platform. The user does not have any direct
control over this process and the image is rsync’d as a special-
purpose unprivileged user onto the Lustre /scratch filesystem
or other more appropriate image store. The images are named
based on a unique identifier that can be used to discriminate
between unique versions of an image of the same name (e.g.,
if the “latest” tag of a Docker container repo changes). This
capability is leveraged by the workload manager integration to
disambiguate versions of images to ensure the same version
used at job run time as was submitted.

E. udiRoot – compute node management

UDI setup and teardown is managed by the udiRoot compo-
nent of Shifter. The udiRoot scripts are typically called by the
prologue and epilogue capabilities of a workload manager, but
under some circumstances may also be engaged interactively
for non-scheduled interactive access to a UDI image. udiRoot
supports a number of important capabilities which include
managing needed kernel modules for Shifter, setting up the
image for consumption in a job, customizing the image to
enable parallel filesystem access and install needed configura-
tion files, configure and operate private sshd to enable intern-
ode communication, enable user-specified filesystem mappings
and, of course, tear down the UDI at job completion.

At the beginning of job the “setupRoot.sh” script is called
with a number of options specifying the needed UDI as well
as features required. First, the script attempts to validate the
requested image, typically by verifying that it exists in the
proper location of the filesystem, however different image
types have different validation procedures. Second, assuming
the image is an image file (e.g., ext4), then the loop block
device drivers are loaded and the image is mounted readonly
and setuid-incapable, typically on /var/udiLoop. To enable
customization of the image, however, a new rootfs (tmpfs) is
mounted read-write and setuid-incapable, typically on /var/udi.
The /var/udi mount point is the target location for setting
up UDI. All the paths in the base of the loopback-mounted
image are bind-mounted into /var/udi. If any paths appear
to be named dangerously (i.e., could confuse the software)
then those paths are skipped and are bind-mounted in /var/udi.
Special care is taken to setup etc, var, and opt within /var/udi
since a variety of custom items need to be placed into these
locations to support site configurations. Similarly, any site-
configured parallel filesystems can be bind-mounted into the
image at this point. All the bind mounts made by setupRoot.sh
are “nosuid”. Most also use “nodev” except for /dev, of course.
These precautions help to ensure that users cannot subvert the
security of the system and escalate their privileges.

An important use-case for the Shifter functionality is to
enable multi-node calculations to function, even if the UDI
does not contain the necessary software to access the HSN. In
that case, the application can still communicate using TCP/IP,
but to support common application needs, we have constructed
a purpose-built ssh daemon that can be more-or-less safely run
within user-defined containers. This ssh daemon is statically
linked against LibreSSL and musl (a small, static glibc-
compatible libc used for micro or embedded Linux systems).
It is important to use a statically linked sshd from within the
Shifter container since it may be dangerous to run processes
as root in an unknown and untrusted environment. The ssh
daemon is started chroot’d in /var/udi and functions in many
ways similar to Cray’s CCM functionality [7]. Finally, a nodes
list is written to /var/nodelist within the UDI container (e.g.,
analogous to $PBS NODEFILE) to allow a user to easily
discover which nodes are part of their job when running in
the UDI.

At the termination of the job the “unsetupRoot.sh” script is
called by the Workload Manager job epilogue. This script is
relatively simpler than the setupRoot.sh script and is designed
to be robust enough to correctly cleanup the node regardless
of the complexity of the requested image. unsetupRoot.sh
first terminates the running sshd, if there is one. Next it
iteratively unmounts all the paths under /var/udi (in a reverse-
sorted manner). Finally it unmounts the /var/udiLoop mount
and removes any kernel modules that were loaded to support
Shifter. A Cray nodehealth check plugin is also included with
udiRoot to ensure that nodes are cleaned up properly. If the
nodehealth check fails, the node should be marked admindown
to prevent more jobs from scheduling on it.



F. Workload Manager Integration

The workload manager is a critical component to the
function and user interface of Shifter. The workload manager is
used to request a Shifter image and specify options like volume
mapping. WLM prologue/epilogue functionality is used to
setup/teardown the Shifter image by calling the appropriate
udiRoot scripts on all the relevant compute nodes. The WLM
is actually what puts the user “into” the UDI at job start
time this is done by performing a chroot() into /var/udi just
prior to exec’ing the user process. Different WLM systems
have different mechanisms for achieving this. The final area
that is influenced by the WLM is resource management. By
default, docker creates its own cgroups to limit resources and
provide management capabilities. This, however, is at odds
with the traditional model for HPC management of systems.
One of the advantages of the Shifter system is that the built-
in process management/tracking functionalities of the WLM
should work natively, even if the WLM uses cgroups. This is
because Shifter does not try to impose any, but does expose
all the cgroups mounted in the base OS to enable the WLM
to make use of them.

Three WLM configurations have been used with Shifter:
Torque/Moab with ALPS, SLURM with ALPS, and Native
SLURM [8]. The torque-based setup uses environment vari-
ables passed with the job to determine which UDI should be
used, as well as any options. The SLURM implementations
rely on a purpose-build plugin which adds the “–image” and
“–imagevolume” options to sbatch and salloc. During job
submission for either, the equivalent of a “docker pull” is
performed to ensure that the latest version of an image is
downloaded to the system. Once the image is present, the
qsub/sbatch/salloc will unblock and the job will be submitted.
At job submission time a prolog runs which calls the udiRoot
scripts. On an ALPS-based system, this is performed on the
MOM node and the nodehealth check software is engaged
to remotely call setupRoot.sh on all the compute nodes
(xtxqtcmd). On a native SLURM system, a simpler prolog
is called on all the nodes separately and in parallel.

To execute a job on the Shifter-setup compute nodes, the
key functionality is to get the batch script or other user
process chroot’s into /var/udi. This is done in ALPS by
specifying CRAY ROOTFS=UDI in the environment of any
aprun. In native SLURM, the plugin automatically chroots the
slurmstepd immediately prior to execing the job script.

From the perspective of the WLM, tearing down the UDI is
done in a similar way as the setup. In the case of ALPS, the
job epilogue will make use of the nodehealth check system
to call the udiRoot scripts on all the relevant compute nodes,
whereas in native SLURM the epilogue runs directly on the
compute nodes.

VI. BENCHMARKING AND COMPARISONS

In Section IV we described some of the potential options
for how to implement Shifter. Here we compare some of those
approaches using the Pynamic benchmark [9] from Lawrence
Livermore National Laboratory. This benchmark can be used

to generate a set of test python modules with each module
having a random number of methods. The number of modules
and average number of methods can be specified during the
generation phase. Once the modules have been generated, a
special driver script is executed to measure the time required to
load the modules. The benchmark reports both the import time
and “visit” time. In general, the visit time will be similar across
the different options, but the import time can vary greatly.
Pynamic is known to stress the metadata performance of a
file system since Python must access each module to build
up the name space. In some cases, the load time for python
modules can take minutes to hours on a heavily loaded system
running at scale. This benchmark was designed to measure this
behavior.

Figure 3 shows a plot of the Pynamic benchmark across
several different storage options. The setup was generated with
so generator.py 495 1850. This corresponds to 495 modules
(python library files) with an average of 1,850 methods per
module. Most results include both a first access timing and
a cached timing. In most cases, the test were performed on
Alva, an Cray XC-30 test and development system. Since it is
a test system, it has a small Lustre file system. However, we
believe that similar results would be obtained on larger scale
file systems since the main bottleneck for this benchmark is
the metadata performance.

We will briefly describe the different storage options. Shifter
is the NERSC implementation which has an Ext4 image stored
in a Lustre file system and mounted via a loop mount. The
Flash (DataWarp) data point is an unpacked image stored in a
Flash-based file system running on an early version of Cray’s
DataWarp. The underlying file system for the Flash storage
is accessed over DVS. The GPFS-Native data point was run
on a login node which runs the native GPFS client and used
an unpacked image stored in a GPFS file system. Note that
it is currently not feasible to run the native GPFS client on a
Cray compute node. The Lustre data point is an unpacked tree
stored in a Lustre file system. It was executed on a compute
node. GPFS-DVS represents the performance of accessing an
unpacked image stored in a GPFS file system via DVS from a
compute node. The final two data points use Docker running
on a commodity cluster node with a local disk. These both
use Docker’s thin provisioning Logical Volume driver. In the
first case, the underlying Logical Volume storage resides on a
GPFS file system as a file in GPFS. The final data points is a
standard Docker installation using a local disk.

The main observation with these results is that the Shifter
approach performs very well. Cases that must heavily inter-
act with the parallel file system’s metadata service typically
perform worse (GPFS - Native, Lustre, GPFS - DVS). DVS
performs reasonably well after caching, but first access can
be slow. Finally, native Docker typically performs very well.
One noticeable data point is the GPFS - Native cached perfor-
mance. GPFS’s client-side cache can perform very well if the
metadata can fit in the limited cache space. However, once this
cache is exceeded, the performance drops off significantly. In
this case, we suspect the entire Pynamic benchmark fit in the
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Fig. 3. Comparison of Pynamic execution times on different storage options.

GPFS metadata cache.
While none of these benchmarks test scaling, in general, we

expect the Shifter approach to scale very well, since metadata
can be more effectively cached on the compute node and
metadata I/O operations occur at the Lustre object storage
target (OSTs) level, not in the Lustre metadata target. This
allows Shifter to leverage the more scalable component of the
Lustre file system (the OSTs) and avoid contention on the
Lustre metadata server. This is possible because the metadata
is not globally shared and each image is read-only mounted.
Even with the advent of Lustre’s Distributed Namespace
Environment (DNE), we still expect the Shifter approach will
provide better performance for cases where metadata doesn’t
need to be globally maintained (i.e. synchronized).

We also conducted other metadata intensive benchmarks
which we do not report and found similar results. So we
do not believe these general trends are specific to Pynamic
but would apply to other metadata intensive cases. It is also
noteworthy that since the parallel file systems and interconnect
are accessed natively, there is no additional overhead and we
would expect to see native performance to the parallel file
systems and over the interconnect. This is in sharp contrast
to virtual machine based approaches which typically see large
impacts due to the added overhead. We have not conducted
any benchmarks to demonstrate this, but the previously cited
results from IBM support this assertion [3].

VII. DISCUSSION

A. Implications

While Shifter was designed to support User Defined Images,
we have since realized it could help address other system re-
lated bottlenecks. For example, we have observed startup time
delays on applications that use dynamically shared libraries.
This issue is particularly noticeable at large scales. This is
primarily due to the overhead for the application to traverse
the file system to locate the required libraries (similar to the
Pynamic use case). Shifter could be used to create custom
images that contain all of the required libraries in the image
in well defined locations. Based on the benchmarking results,

this could significantly reduce the time needed to load the
libraries and start the applications.

Shifter can also facilitate reproducibility. This is particularly
important for scientific work, where scientists may need to
verify results years later or duplicate an analysis pipeline but
with updated data. Docker is already being considered as
a tool to address this challenge [10]. Since images can be
saved and tagged with Docker, users can easily bring back
an image that was used in the past. There are limitations
to this. For example, if the image has external dependencies
or has strict dependencies on the system (i.e. MPI libraries
and interconnect firmware levels) the image may no longer
function. However, this provides a level of reproducibility that
is difficult to achieve today. In addition, since Shifter can
integrate into Docker’s image repository, Docker Hub, this
makes it easy for collaborators to develop and share images,
even across institutions. Docker Hub was largely inspired by
GitHub as way to facilitate the sharing of images and it is
poised to become the de facto destination for distributing
images. Already scientists are starting to build and package
images via Docker Hub to improve collaboration and simplify
reproducing results. This can help scientists be more produc-
tive, but also help them be better scientists.

B. Security

One driving concern in the design of Shifter was security.
While at first glance the introduction of User Defined Images
would seem to dramatically increase security risks, we believe
that the approach used with Shifter largely mitigates any ad-
ditional risks. We view the container as basically an extension
of the application which the user can already control today. So
Shifter largely simplifies and streamlines the ability to create
and invoke environments, but doesn’t provide any capabilities
beyond what a regular user already possesses. Where some
additional control is provided, Shifter is careful to limit how
that capability can be used to prevent introducing additional
security risks. For example, since the processes are all ex-
ecuted as the user (i.e. non-root), the user doesn’t have any
elevated privileges when running in their defined environment.
We believe the most critical risk is that a user could elevate
their privileges using something inside the image. However,
the image and all mounted file systems are mounted with
setuid and device support disabled. This addresses the most
likely mode of escalation. Furthermore, privileged services (i.e
root executed services) are not run inside the images.

Another concern is that the images may contain software
that has (known) flaws. This is largely true already, since users
can typically install their own software and may not maintain
it. So this risk exists already and Shifter doesn’t dramatically
change this risk. Image repositories do introduce a new vector
for attackers to exploit. However, users can already download
and execute malicious code today, so this would be just a new
example of an old theme. In addition, the Docker developer
community is planning to add the ability sign and certify
images which should help address some of the risk.



Since the images for Shifter are stored and packed on a
Gateway server, this does provide an centralized place to
audit and scan images for known vulnerabilities. NERSC may
explore how we can leverage this option. For example, we
could alert users that a selected image has a defect and warn
them to avoid using the image. However, the authors still
believe that these risks should be weighed carefully and that
Shifter’s approach does a good job of minimizing risks while
greatly increasing productivity.

VIII. FUTURE DIRECTIONS

Moving the Shifter implementation to production-ready
quality is our primary goal. To this end, there are a number of
important areas that we would like to consider. First, we are
investigating 3rd party solutions to the Image Gateway, such
as the Openstack Glance software. We are also considering
methods of running multiple Shifter UDI jobs on a single node
- for example in NERSC’s edison serial queue. Expanding on
the native-format-agnostic capability of Shifter, we would like
to extend support to qcow2 images, as well as other formats.
Once recently accepted kernel features like OverlayFS or simi-
lar functionality become generally available on the computing
platforms, it may be worth using those features instead of
some of the bind-mounts currently used. Finally, we are also
working on building a platform at NERSC to automatically
generate and build optimized images focused on supporting
MPI applications.

IX. CONCLUSION

Container-based computing is driving a revolution in com-
puting. It is likely that container computing coupled with a
growing repository of images will dominate how applications
are developed and delivered in the coming years. While this
revolution has yet to impact the scientific and HPC community,
we believe that the flexibility and productivity gains it enables
will drive its adoption in this space. While we consider this
initial implementation of Shifter as a prototype, we believe
it will serve as an early entry-point for our users to start
exploring and leveraging this new model.
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